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A theory relating the electronic structure and the properties of metals has been described earlier. It was 
based upon the self-consistent-field method and a perturbation solution of the energy-band calculation. This 
theory is now applied explicitly to Na, Mg, and Al. The orthogonalized plane wave (OPW) form factors and 
the energy-lattice wave-number characteristic were computed by machine and used to compute atomic 
properties. The correct metallic structure was found to have lowest energy in each case: hep, hep, and fee, 
respectively. Computed c/a ratios for sodium and magnesium of 1.63 and 1.62, respectively, are close to 
those observed. The elastic shear constant for axial distortions was computed for the hexagonal phase of each 
metal; for magnesium the constant is known and the agreement excellent. The vibration spectrum for fee 
aluminum is computed and corresponds to errors in the elastic constants of the order of a factor of 2; this 
sensitivity reflects strong cancellation (which greatly increases from sodium to aluminum) between electro
static and band-structure contributions to the energy. Calculations of the total binding energy of aluminum 
and the variation of energy with lattice parameter are quite inaccurate. Inclusion of a free-electron exchange 
and correlation correction does not significantly improve the results and, in fact, makes the crystal unstable 
against the formation of lattice distortions. Pressure dependence of the elastic constants was calculated for 
aluminum and gave discrepancies of a factor of 2. It is concluded that the theory gives a rather good ac
count of changes in energy due to ion rearrangement at constant volume, but not of changes in energy due to 
changes in volume. A phenomenology is proposed in which the pseudopotential is adjusted to fit the ob
served vibration spectrum. This phenomenology is applied to aluminum with a single adjustable parameter 
and the resulting energy-lattice wave-number characteristic given. 

I. INTRODUCTION 

IN two earlier papers1,2 we developed a method for 
calculating most of the properties of simple metals 

from first principles and this scheme was applied to zinc. 
In essence this was a scheme for carrying out a band 
calculation, but was carried out in a perturbation ap
proximation which permitted the treatment of general 
arrangements of the ions. Furthermore, because of the 
perturbation treatment, it was possible to treat directly 
many electronic properties and even to sum the total 
energy as a function of the position of ions and thereby 
to treat atomic properties. Agreement with experiment 
with respect to electronic properties was very good, 
and we have subsequently obtained and published3 the 
characteristics which determine the electronic properties 
for all nontransition metals with atomic number less 
than that of zinc. 

With respect to the atomic properties, the situation 
was less clear. The energy-wave-number characteristic 
which determines the atomic properties was obtained 
for zinc by hand calculation and was clearly not accurate 
enough to give a quantitative check on the theory; in 
some cases reasonable agreement was obtained, in other 
cases not. We have therefore embarked upon a machine 
calculation to test the theory with respect to atomic 
properties. A program was written which reads the 
Hartree-Fock wave functions and parameters for the 
core, and also reads the atomic volume. It then produces 
the energy-wave-number characteristic, as well as other 
interesting curves. The same program was applied to 

sodium, magnesium, and aluminum and a number of 
properties treated. The present paper describes these 
results. 

The method used is essentially that given earlier, but 
some improvements in the formulation and in the 
numerical approximations have been made. In addition, 
volume-dependent terms are included. It seems desirable 
to outline the theory from the start rather than to list 
all of the modifications which are made. This will also 
enable us to illuminate the relation of the pseudo-
potential method to the orthogonalized plane wave 
(OPW) method and the difference between different 
pseudopotentials in what seems to the author as a lucid 
way. This is certainly not the only manner in which such 
comparisons may be made; Pick and Sarma4 as well as 
Bassani and Celli,5 Austin, Heine and Sham,6 and Cohen 
and Heine7 have given general discussions of the pseudo-
potential method. 

Three important physical approximations enter the 
theory. 

(1) The self-consistent-field approximation. We in
clude exchange between conduction and core electrons 
in a Slater8 free-electron approximation though full 
Hartree-Fock exchange could be used with little addi
tional effort. In the main body of the paper interactions 
between conduction electrons were treated in the 
Hartree approximation. Some calculations also were 
carried out and reported in Sec. VI in which exchange 

1 W. A. Harrison, Phys. Rev. 129, 2503 (1963). 
2 W. A. Harrison, Phys. Rev. 129, 2512 (1963). 
* W. A. Harrison, Phys. Rev. 131, 2433 (1963). 

4 R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964). 
6 F. Bassani and V. Celli, Phys. Chem. Solids 20, 64 (1961). 
6 B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276 

(1962). 
7 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 
8 J. C. Slater, Phys. Rev. 81, 385 (1951). 
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and correlation were included in a free-electron approxi
mation which is a straightforward extension of Slater8 

free-electron exchange suggested by Brooks.9 A some
what different correction for correlation and exchange 
based upon Hubbard's10 method has been used by-
Sham11 in treating the vibration spectrum of sodium. 

(2) The cores are treated as small. This approxima
tion enters in three different ways. First, overlap of 
adjacent ions is neglected so that the only direct ion-ion 
interaction is through the Coulomb fields. Second, the 
variation over the core of the fields due to adjacent 
ions and due to the conduction electrons is neglected. 
Thus, the core wave functions (though clearly not the 
core energies) are the same as in the isolated ion. The 
validity of this assumption can be readily verified by 
noting that the core functions are almost identical in the 
ion and in the atom. Third, in the evaluation of integrals 
of the products of core functions and various slowly 
varying functions, the slowly varying functions are 
evaluated at the nucleus and taken out of the integral. 
For the metals we treat these approximations are very 
good. However, this assumption is important in limiting 
the metals which we may treat; in particular, the noble 
and transition metals are ruled out. 

(3) A perturbation method for solution of the OPW 
method carried to second order. The perturbation ex
pansion is by no means unique; we intend to clarify our 
expansion early in the formulation. The expansion 
appears reasonable on the gounds that the matrix ele
ments which enter are generally small (of the order of a 
tenth) in comparison to the Fermi energy. A further 
qualitative check on the expansion is made by com
puting the valence-electron charge density in the atomic 
cell. For the face-centered cubic structure the charge 
density is found to be quite uniform, suggesting that 
deviations from single-plane-wave behavior might rea
sonably be treated as a perturbation. Of course part of 
the purpose for our treatment of these metals is to see 
from experiment to what extent this second-order theory 
is adequate. 

II. FORMULATION 

We will restrict our treatment to the calculation of 
energy eigenstates; in our earlier analysis1 we formulated 
also time-dependent calculations. Thus we will begin by 
writing the time-independent Schrodinger equation 
which is satisfied by the one-electron wave functions \pk, 

ff^=[r+7(r)>*=£^*. (1) 

Here H is the Hamiltonian. T is the kinetic energy, 
— fi2V2/2tn, and V(r) is the self-consistent potential in
cluding Slater free-electron exchange between con
duction and core electrons. 

We next distinguish between electronic core states 

9 H. Brooks, Trans. AIME 227, 546 (1963). 
10 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958). 
11 L. J. Sham (to be published). 

(subscript a) and conduction-band states (subscript k) . 
According to our second assumption above, the core 
wave functions \pa are the same as in the isolated ion, 
though the core energies Ea will be different from that 
in the ion. 

Hfa=EaxI/a. (2) 

The subscript a denotes the position of the ion in the 
metal as well as the angular-momentum and energy 
quantum numbers. 

The conduction-band states are to be expanded in 
orthogonalized plane waves; that is, plane waves which 
have been orthogonalized to every core state on every 
atom wherever that atom may lie. I t is convenient to 
abbreviate our notation by using the projection operator 
P introduced by Pick and Sarma.4 P projects any func
tion on the core wave functions; thus, an orthogonalized 
plane wave may be written 

«*- r-E«*«(r) UsWe^'dr'^il-P^*'*. (3) 

I t is convenient to normalize our plane waves in the 
volume of the crystal 12. We write such normalized plane 
waves and normalized core functions in the form, 

| k>=0~ 1 / 2 expA-r , (4) 

!«>=*«(*). (5) 

Using the notation of Eqs. (3), (4), and (5), we may 
write explicitly the expansion of the wave function \pk in 
orthogonalized plane waves. 

^=LWI0( l - i> ) | k+q> . (6) 

We may substitute this form in the Schrodinger equa
tion [Eq. (1)] and rearrange terms to obtain 

Eq^(k)r|k+q>+Eq«q(k)^+(£*-fl)P]|k+q> 
= Sb£Qaq(k)|k+q>. (7) 

Simply by arranging terms in this way we have taken 
the pseudopotential point of view. We note that Eq. (7) 
has the form 

T4>h+W<l>k=Exl>k (8) 
with 

^ = Zqtfq(k)|k+q> W 
and 

W=V+(Ek-H)P=V+?:a(Ek-Ea)\aXa\ . (10) 

Thus we have denned a nonlocal pseudopotential W 
which we treat as a perturbation. In a more straight
forward OPW calculation we would have left all Ek 
terms on the right-hand side and developed a secular 
equation for evaluating the eigenvalue Ek. In the pseudo-
potential method the eigenvalue, at least at this stage, 
appears also in the pseudopotential itself. 

We may note at this point a peculiarity in the pseudo-
potential method. Cohen and Heine7 and Bassani and 
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Celli5 have noted that any linear combination of core 
wave functions may be added to fa and it will remain a 
solution of Eq. (8) and will lead to the same wave func
tion \pk as derived by Eq. (6). Austin, Heine, and Sham6 

have further pointed out that W may be replaced by a 
general pseudopotential, 

Wfa=Vfa+j:a{f{r,a)\fa)\a), (11) 

where /(r ,a) is an arbitrary function of position and of 
core index a, and Eq. (8) will have solutions of the same 
eigenvalues Ek. The arbitrariness in /(r ,a) and in #& is 
the same; a particular / (r ,a) leads to a unique <j>k unless 
W is taken with the specific form of Eq. (9), the latter 
being valid for all fa. By selecting a particular set of 
solutions fa, we may select a particular form for the 
pseudopotential W and thereby eliminate the depend
ence of W upon Ek; this is done without approximation. 
At the same time we may attempt to select a fa which 
will optimize the convergence of the perturbation ex
pansion. Thus we at once eliminate the ambiguity, 
remove the dependence of W upon the eigenvalue, and 
in some sense optimize the convergence. 

I t is convenient to develop the perturbation expansion 
before specifying the form of W. We regard W as a 
first-order quantity and in the standard way obtain the 
first-order coefficients of the expansion of the wave 
function and the energy to second order. 

<k+q|PF|k> 
aQ(k) = a0(k). (12) 

(n2/2m)(k2-(k+q)2) 

fi2k2 

Ek= +(k\W\k) 
2m 

< k | ^ | k + q ) < k + q | P F | k > 
+ V __! : 1! (13) 

Q (fi2/2m)(k2-(k+q)2) 

The first-order wave functions based upon Eq. (12) will 
be used to compute the self-consistent screening field. 

In order to select the form of the pseudopotential, we 
may write the general pseudopotential of Eq. (11) as 
applied to a plane wave |K) . This is done by making a 
Fourier expansion of / ( r , a ) ; the result may be written 
in the form, 

TF |K)=F |K)+E a / (K ,a ) | a )<a |K) . (14) 

For each choice of the arbitrary function / ( K , « ) , we will 
obtain a particular form for the pseudo wave function 
fa. Whatever form we choose, we will use the single 
plane | k) as the zero-order approximation to fa. Thus 
a reasonable criterion might be based upon taking a 
form such that fa is as close as possible to a plane wave. 
To obtain this in terms of a criterion for / ( K , « ) , we note 
that W operating on any true pseudo wave function fa 
must give Vfa+^a(Ek—Ea)\a)(a\fa). If |k) is to be 
close to the true fa corresponding to a given form of 
Eq. (14), then /(k,a) must be close to Ek—Ea. We are 

therefore motivated to select the best value of Ek from 
Eq. (13) short of requiring an iteration for the determi
nation of W and we obtain the form 

W | K > = F | K > 

+Za(m2/2m+(k\W\k)--Ea)\a)(a\K). (15) 

Replacing k by K in the right-hand side would also 
be a possible choice, but would make W non-Hermitian. 
(Note added in proof. Such a choice leads to the same 
energies to second order.) In these terms the pseudo-
potential of Bassani and Celli5 corresponds to taking 
/(K,<X) equal to h2k2/2m+(k\ V\k)-Ea; that of Pick 
and Sarma,4 to taking / ( K , O ) equal to h2k2/2m—Ea\ and 
the simple plane-wave expansion of ^&, to taking j (K,CK) 
equal to zero. I t should be mentioned again that all four 
forms are valid pseudopotentials. 

We may also show12 that the form of Eq. (15), is 
precisely the one that we obtained earlier1*13 by follow
ing the procedure given by Cohen and Heine7 for selecting 
the <j)k which is the smoothest; that is, the fa having a 
minimum (y<l>k,Vfa)/((l>k,fa). This latter procedure is 
certainly the better defined, and possibly the more con
vincing argument supporting the particular pseudo-
potential which we use. We will not, however, repeat 
that argument, but proceed with the form of Eq. (15). 

The evaluation of matrix elements of W from Eq. (15) 
is not straightforward. We have the considerable prob
lem of sorting out the contributions to the self-consistent 
potential V from the ions and the electrons, and also in 
determining the values of Ea in the metal. A discussion 
of these problems is relegated to the Appendix, where 
we develop explicit expressions for the matrix elements 
of W and evaluate the total energy. 

In the course of these calculations the matrix elements 
of W and of P are factored as in diffraction theory. 
There is a form factor which is a matrix element for 
a single ion and is independent of the positions of the 
ions; these form factors are written ( k + q | w | k ) and 
(k+q | /> |k) and enter directly in calculations of elec
tronic properties.1'2 There is also a geometrical structure 
factor 5(q) given by 

5(q) = ( l / i Y ) E i e x p ( - i q . r y ) , (16) 

where the sum is over all N ion positions i> This is 
precisely the structure factor which enters diffraction 
theory. 

The energy is finally divided into three terms. First 
is a free-electron energy E/e which depends upon the 
atomic volume but is otherwise independent of the 
arrangements of the ions. Second is a band-structure 
energy given by 

£».=£.'S(q)*S(q)£(«), (17) 
12 This is most readily done by noting that (¥k2/2m—Ea)\a) 

X(a\k)=\a)(a\T-H\k)=-PV\k). 
13 W. A. Harrison, Phys. Rev. 126, 497 (1962). 
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FIG. 1. Matrix elements of the pseudopotential for aluminum. 
k is taken to lie on the Fermi surface; for forward scattering q lies 
parallel to k; for back scattering q lies antiparallel to k; the form 
factor gives matrix elements for k + q lying on the Fermi surface. 

where E(q) is called the energy-wave-number character
istic; it depends upon the atomic volume and the local 
potentials but is independent of the detailed ion posi
tions. E(q) may be thought of as the change in energy 
due to the introduction of a Brillouin-zone plane corre
sponding to a lattice-wave-number q. The prime on the 
sum indicates that the q=0 term is excluded. Finally 
there is an electrostatic energy which is the energy of 
point ions of effective valence 

Z*=Z{l+{NZ)-^k(k\p\k)) (18) 

embedded in a uniform compensating background. This 
effective charge is the same as that given by Pick and 
Sarma4 and differs from that we used earlier due to a 
slightly different decomposition of the total energy. 

HI. CALCULATIONS AND RESULTS 

The procedure described in the last section and in the 
Appendix was programmed for a GE 225 computer for 
elements in the third row of the periodic table. The 
program reads the atomic volume, the valence, the 
Hartree-Fock wave functions for the Is, 2s, and 2p 
functions in the isolated ions and their corresponding 
Hartree-Fock energies. It then computes E(q), and 
other interesting curves. 

The many integrals to be performed are carried out 
numerically, generally using Simpson's rule. For real-
space integrals the interval was given by that for the 
tabulated wave function. Reciprocal-space integrals 
were based upon intervals in wave-number space of 
0.1&F. Additional care was taken where principal values 
of integrals were required. Integrals over the Fermi 
sphere showed cylindrical symmetry, so the numerical 
volume integration involved sums over circles; over 200 
circles in the Fermi sphere were used, these being packed 
more closely where the circles were longer. 

Hartree-Fock cores were taken for sodium from 
Hartree and Hartree,14 for magnesium from Yost,15 and 

for aluminum from Froese.16 The atomic volumes used 
were those observed and are 267,154, and 111.4 a. u. (or 
Bohr radii cubed) for Na, Mg, and Al, respectively. 

In the course of the E(q) calculation, the form factors 
(k+q | w | k) of the matrix elements are computed; these 
are the matrix elements of the pseudopotential associ
ated with a single ion. Figure 1 shows a set of such 
matrix elements for aluminum for k lying on the Fermi 
surface and for q parallel to and antiparallel to k. If the 
pseudopotential could be replaced by a local potential, 
these curves would be identical. As we found earlier for 
zinc,2 these curves differ greatly, particularly in the 
important region q~l.5kF to q=2kF. The use of the 
true nonlocal pseudopotential would appear to be quite 
important in aluminum as well as zinc. Similar curves 
for sodium and magnesium indicate the same variations. 

Also shown on Fig. 1 is the OPW form factor for 
aluminum; this is the matrix element between two states 
both of which lie on the Fermi surface. This is the curve 
which determines many electronic properties, as we 
found earlier.1'2 In Table I we have tabulated the OPW 
form factors for sodium, magnesium, and aluminum. 
These differ by less than 0.02 Ry from the cruder curves 
we obtained earlier3 by hand. 

The main result of our calculations is the energy 
lattice-wave-number characteristic, E(q), which deter
mines the band-structure energy according to Eq. (17). 
These are tabulated for the observed atomic volume in 
Table II along with the parameter 

(k\p\k)^(NZ)-^Zk(Mp\k), 

which determines the effective valence of Eq. (18) deter
mining the electrostatic energy. The final column will be 
discussed in Sec. VII. The E{q) curves of Table II are 
displayed in Fig. 2. The peak near 2k F arises because of 

TABLE I. OPW form factor (k+q |w |k) in rydbergs. 

14 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A193, 299 (1948). 

16 W. J. Yost, Phys. Rev. 58, 557 (1940). 

q/kF 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

Sodium 

-0.1464 
-0.1458 
-0.1392 
-0.1333 
-0.1293 
-0.1229 
-0.1134 
-0.1041 
-0.0954 
-0.0852 
-0.0731 
-0.0615 
-0.0495 
-0.0379 
-0.0272 
-0.0162 
-0.0060 
+0.0038 

0.0130 

Magnesium 

-0.3424 
-0.3320 
-0.3094 
-0.2858 
-0.2632 
-0.2361 
-0.2043 
-0.1732 
-0.1439 
-0.1137 
-0.0828 
-0.0546 
-0.0280 
-0.0041 
+0.0162 

0.0346 
0.0500 
0.0626 
0.0728 

Aluminum 

-0.5551 
-0.5524 
-0.5272 
-0.4837 
-0.4369 
-0.3901 
-0.3378 
-0.2810 
-0.2265 
-0.1763 
-0.1274 
-0.0805 
-0.0393 
-0.0024 
+0.0288 

0.0543 
0.0755 
0.0915 
0.1031 
0.1107 

16 C. J. Froese, Proc. Camb. Phil. Soc. 53, 210 (1957). 
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TABLE II. Energy-wave-number characteristic E(q) in rydbergs per electron. 
The effective valence for electrostatic energy is 

q/kF 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 

Sodium 
(k\p\k)w=0.0750 

-2.178X10 " 
-5.371 
-2.332 
-1.266 
-7.724X10-* 
-5.038X10-1 

-3.416X10"1 

-2.362 X10"1 

-1.646X10-1 

-1.144X10"1 

-7.853X10-2 

-5.256X10-2 

-3.399X10-2 
-2.091X10"2 

-1.200X10"2 

-6.217X10-3 

-2.724X10"3 

- 9.053 X10~4 

- 2.003 X10~4 

-1.474X10"4 

-3.564X10-4 

- 6.605 X10"4 

-9.580X10"4 

-1.202 X10"3 

-1.378X10"3 

-1.484X10"3 

-1.529X10~3 

-1.524X10"3 

-1.481 X10~3 

-1.410X10"3 

-1.322 X10~3 

-1.223 X10~3 

-1.120X10"3 

-1.016X10-3 

-9.164X10"4 

- 8.207 X10-4 

-7.311X10-4 

- 6.481 X10~4 

-5.721X10"4 

-5.030X10"4 

-4.404X10-4 

- 3.842 X10~4 

-3.338X10"4 

-2.889X10"4 

-2.490X10"4 

-2.137XHT4 

-1.827 X10~4 

-1.556X10"4 

-1.319X10"4 

-1.114X10"4 

Magnesium 
<&|̂ |£>av = 0.0850 

_ _ _ _ _ _ _ 
-8.648 
-3.641 
-1.894 
-1.093 
-6.671 X10"1 

-4.176X10"1 

- 2.629 X10-1 

-1.639X10"1 

-9.999X10-2 

-5.857X10~2 

-3.218X10-2 
-1.608X10-2 
-6.930X10"3 

- 2.353 X10"3 

6.270X10"4 

- 5.448 X10~4 

-1.241 X10"3 

- 2.067 X10~3 

-2.483 XIO"3 

-2.504X10-3 

-2.514X10"3 

- 2.432 X10~3 

-2.279X10"3 

-2.080X10"3 

-1.861 XIO"3 

-1.638 XIO"3 

-1.421 X10"3 

-1.220X10"3 

-1.037 X10~3 

-8.752X10"4 

- 7.331 X10~4 

-6.103X10"4 

-5.050X10"4 

-4.155X10"4 

-3.399X10"4 

-2.764X10"4 

-2.233X10"4 

-1.792X10"4 

-1.428X10"4 

-1.130X10"4 

-8.876X10"6 

-6.920X10"5 

-5.358 XIO"5 

-4.123X10"5 

-3.158XHT5 

- 2.412 X10~6 

-1.843 X10~6 

-1.412X10-6 

-1.091 X10"6 

Aluminum 
(k\p\k)av=0.0790 

-4.515X10 
-1.081X10 
-4.470 
-2.267 
-1.267 
- 7.425 XKT1 

-4.430X10"1 

-2.633 XIO"1 

-1.533X10-1 

-8.597X10-2 

-4.529X10-2 
-2.160X10-2 
- 8.782 X10~3 

-2.746X10"3 

-6.996X10~4 

-7.744X10"4 

-1.759X10"3 

-2.887X10-3 

-3.657X10~3 

-3.655X10-3 

-3.222X10"3 

-2.907X10"3 

- 2.577 X10-3 

-2.244X10-3 

-1.920X10"3 

-1.620X10"3 

-1.350X10"3 

-1.112X10"3 

-9.067X10"4 

- 7.322 X10~4 

- 5.863 XIO"4 

-4.658X10"4 

-3.674X10"4 

-2.879X10"4 

~2.243X10~4 

-1.738X10-4 

-1.341 X10~4 

-1.031 XIO"4 

-7.903 XIO"5 

-6.045 XIO"5 

-4.621 XIO"5 

-3.536X10-5 

-2.716X10-5 

-2.101X10"5 

-1.642 XIO"5 

-1.303 XIO"5 

-1.054X10"5 

-8.729X10"6 

-7.404X10"6 

-6.436X10"6 

Aluminum 
(Phenomenological) 
(k\p{k)av = 0.0790 

-4.509X10 
-1.075X10 
-4.418 
-2.220 
-1.224 
-7.057 X I O 1 

-4.119 XIO"1 

-2.378 XIO"1 

-1.331 XIO"1 

-7.066X10-2 
-3.428X10-2 

-1.430X10-2 

-4.546X10-3 

-9.309 X10~4 

-7.001 XIO"4 

-2.057 XIO"3 

- 3.839 X10~3 

-5.352 XIO"3 

-6.159X10"3 

-5.849X10"3 

-5.011X10-3 

-4.405 X10~3 

-3.826X10-3 

-3.277X10"3 

-2.769X10"3 

-2.314X10"3 

-1.914X10"3 

-1.568 XIO"3 

-1.273X10~3 

-1.026X10"3 

-8.212X10"4 

-6.528X10"4 

-5.158X10"4 

-4.054X10"4 

-3.170X10"4 

-2.469X10"4 

-1.916X10"4 

-1.482 XIO"4 

-1.144X10"4 

-8.826X10-5 

-6.803 X10~5 

-5.250X10-5 

-4.064X10"5 

-3.163X10"5 

-2.484X10"5 

-1.974X10~5 

-1.593X10"5 

-1.310X10"5 

-1.099 XIO"5 

-9.428 XIO"6 

the matrix elements going through zero in this region, 
as indicated by the form factors in Table I. As in the 
case of zinc, the logarithmic singularity in E(q) at 
exactly 2k F is not visible on the scale to which the plot 
is made. Finally, it is noted that the decay at large q is 
more rapid for aluminum than for magnesium and 
sodium. The decay has been followed out to 9kF in 
aluminum and shows an additional decrease in E(q) of 
a factor of 40 below that at 5kF. In the calculations of 
properties we have made, the convergence of the sums 
to large q has been quite rapid. Had we not separated 
the electrostatic energy, but included its effect in E(q), 
the decay would have been only as 1/q2, and the con
vergence very bad. 

As we did for zinc,2 we may add the band-structure 
and electrostatic energy and Fourier transform to obtain 
the effective two-body central force interaction between 
ions. This has been done for aluminum and the result 
shown in Fig. 3. There is some drift in the curve at large 
r arising from slight inaccuracy in E(q) at small q. The 
drift was much worse for magnesium and sodium and 
these curves are not shown. Pick17 has compared the 
amplitude and frequency of these oscillations and finds 
they are very close to the asymptotic oscillations which 
arise from the logarithmic singularity in E(q) at q= 2JZF. 
This is rather surprising, since the singularity itself is 

17 R. Pick (private communication). 
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FIG. 2. The computed energy-wave-number characteristics 
E(q) for sodium, magnesium, and aluminum, each at the observed 
atomic volume. 

not visible; however, it suggests that the associated dis
tortions of E(q) in this region are the source of the oscil
lations rather than the peak which comes from the 
vanishing of matrix elements. In any case, for the com
putation of properties we have found it much more 
convenient to use the E(q) curves of Table I I directly. 

We should perhaps also mention, in connection with 
Fig. 3, that the existence of this central-force interaction 
does not imply that the elastic constants will satisfy the 
Cauchy relations, because there is an additional volume-
dependent term. Thus, the ions are not in equilibrium 
positions with respect to the central-force interaction by 
itself, a condition which is required for the derivation 
of the Cauchy relations. 

IV. COMPUTATION OF PROPERTIES 

The first use of the E(q) curves we make is the com
parison of the energy of different crystal structures. We 
have done this for the three simple metallic structures— 

face-centered cubic, body-centered cubic, and hexagonal 
close-packed, the latter being carried out as a function 
of the axial ratio. In all cases the calculations were 
carried out at the observed atomic volume. The calcula
tions are straightforward; we construct the reciprocal 
lattice, evaluate the structure factor 5(q) and the ap
propriate E(q) for each and sum over the reciprocal 
lattice to obtain the band-structure energy. I t is interest
ing to note that it is necessary to sum over a rather 
large number of reciprocal lattice vectors before the 
sum settles down. Figure 4 shows the sum for body-
centered and hexagonal close-packed structures in com
parison to the sum for face-centered cubic as reciprocal 
lattice vectors within a larger and larger sphere are 
included. A large portion of the oscillation arises because 
of a different total number of reciprocal lattice vectors 
within a given sphere for the different structures. This 
means that to distinguish the energies of the different 

FIG. 4. Convergence of the energy summation in aluminum. The 
curves represent the difference in band-structure energy between 
hexagonal-close-packed (solid line) or body-centered-cubic 
(dashed line) and that for face-centered-cubic as a function of the 
volume of wave number space over which we had summed. The 
limiting values shown are for summation over several hundred 
reciprocal lattice vectors. 

-•008' 

FIG. 3. The effective interaction between ions in aluminum. 
Also shown is the distribution of neighbors as a function of 
distance in the face-centered-cubic structure. 

structures, a very complete description of the electronic 
states is needed—in fact, one involving well over 50 
orthogonalized plane waves. In our calculations we sum 
over several hundred reciprocal lattice vectors and note 
that fluctuations are smaller than a part in a thousand. 
In these calculations, E{q) was interpolated by fitting a 
cubic equation to values at the four nearest q's given 
in Table I I . 

The electrostatic energy for each structure appears in 
the literature.18 These values have been obtained by 
Ewald sum methods. However, a value for the hex
agonal-close-packed structure appears only for the ideal 
axial ratio. In our treatment of zinc we used Hunting
ton's19 computation of a shear constant to estimate the 

" W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961). 
19 H. B. Huntington, in Solid State Physics, edited by F. Seitz 

and D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, 
p. 213. 
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TABLE III. Electrostatic energy. The energy per ion is given by 
Z*2a/ro rydbergs where Z* is the effective valence, YQ is the atomic 
sphere radius in atomic units, and a is 

TABLE V. A shear constant in the hexagonal phase 
Cn+Ci2+2C33-4Ci3 in units of 1011 dyn/cm2. 

fee 
bec 
hep 
axial ratio 

1.633 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

-1.79172* 
-1.79186a 

-1.79168b 

-1.78998 
-1.79156 
-1.79129 
-1.78909 
-1.78497 
-1.77892 

a K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935). 
t>W. Kohn and D. Schechter (unpublished). Result quoted by Carr 

(Ref. 18). 

values for other axial ratios. Here we evaluate them 
accurately. We write the energy as the sum over recipro
cal space for general axial ratio and formally perform 
the summations in a way to give an exponentially con
vergent sum over reciprocal lattice vectors in the basal 
plane. There remains an undetermined constant term 
which may be evaluated by fitting the energy obtained 
by Kohn and Schechter20 at the ideal axial ratio. The 
results of this calculation are given in Table I I I . 

Thus we obtain the energy for each metal for the 
various crystal structures. Table IV gives these values; 
for the hexagonal structure we give the axial ratio at 
which the minimum energy occurs and that energy. The 
electrostatic energy used is the difference between the 
computed electrostatic energy and that for a point ion 
in an atomic sphere [corresponding to a value of a (see 
Table III) of —1.8]. The correct structure is obtained in 
each case, though it must be admitted that the difference 
in energy found between hexagonal and face-centered-
cubic sodium is perhaps too small to be regarded as 
significant. The computed axial ratios, also, are very 
close to those observed in sodium and magnesium and 

TABLE IV. Energy of the crystal structures in rydbergs per ion. 

Face-centered cubic 
Band structure 
Electrostatic 

Total 
Body-centered cubic 

Band structure 
Electrostatic 

Total 
Hexagonal close packed 

Band structure 
Electrostatic 

Total 
c/a 
c/a (observed) 

* C. S. Barrett, Acta Cryst. 

.Na 

-0.03797 
+0.00240 

-0.03557 

-0.03759 
+0.00236 

-0.03523 

-0.03802 
+0.00241 

-0.03561 
1.629 
1.634a 

9, 671 (1956). 

Mg 

-0.11412 
+0.01172 

-0.10240 

-0.11192 
+0.01152 

-0.10040 

-0.11650 
+0.01182 

-0.10468 
1.619 
1.630 

Al 

-0.22275 
+0.02907 

-0.19368 

-0.20835 
+0.02859 

-0.17976 

-0.22725 
+0.03729 

-0.18996 
1.793 

Band structure 
Electrostatic 

Total 
Experimental 

Na 

-0 .79 
+3.55 

2.76 

Mg 

-17 .8 
+30.0 

12.2 
12.3* 

Al 

-106.2 
+117.6 

11.4 

) W. Kohn and D. Schechter (unpublished), quoted in Ref. 18. 

a R. E. Schmunk and C. S. Smith, Phys. Chem. Solids, 9, 100 (1959). 

to the ideal value of 1.633. I t is striking that the axial 
ratio for hexagonal aluminum is somewhat higher. 

The computed difference in energy between body-
centered and hexagonal sodium (5X10~3 eV/atom) is 
somewhat higher than the experimental estimate given 
by Martin21 (0.15X10 - 3 eV/atom). Such a discrepancy 
might arise partly from our calculation being at constant 
volume, while experimentally there is an appreciable 
change in volume during the transition. In addition, it 
is very difficult experimentally to obtain parameters for 
a system which only partially transforms and for which 
the degree of transformation is not directly measurable. 
We therefore do not feel that this comparison gives a 
real measure of our error. The fact that the face-centered 
energy lies between the other two is not unreasonable. 
Presumably it is just the body-centered lattice which is 
soft and which therefore has a rapidly increasing entropy 
with temperature such that the free energy soon be
comes lower than that for the hexagonal structure. We 
note that in magnesium the energy difference is an order 
of magnitude bigger and the transformation is therefore 
suppressed. 

In computing the energy as a function of axial ratio, 
we also obtain directly the elastic shear constant associ
ated with this distortion. The values so obtained are 
given in Table V. The agreement with experiment for 
magnesium is even closer than the precision of our 
calculations. Though the elastic constant for sodium is 
not known, we may expect our computed value is rather 
close since it is close to the electrostatic value (which 
would be 3.1 X1011 dyn/cm2 for a unit effective charge). 
The electrostatic energy is known to give a good account 
of the elastic constants in body-centered sodium.22 The 
striking thing about the aluminum result is the ex
tremely strong cancellation between electrostatic and 
band-structure contributions. The result that the cancel
lation between electrostatic and band-structure terms 
grows rapidly from sodium to aluminum could have been 
reached by considering just the electrostatic and experi
mental elastic constants. For testing our theory it is an 
important fact to keep in mind; comparisons with 
sodium do not provide a very stringent test, but any 
errors in our band-structure calculation for aluminum 
can be greatly magnified in the results. I t is aluminum 
which provides the most sensitive test. 

21 D. L. Martin, Proc. Roy. Soc. (London) A254, 433 (1960). 
22 Reference 19, p. 288. 
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FIG. 5. Computed vibration spectrum of aluminum compared 
with the experimental spectrum determined by J. L. Yarnell, 
J. L. Warren, and S. H. Koenig, Proceedings of the International 
Conference on Lattice Dynamics, Copenhagen, August 1963 
(published in Phys. Chem. Solids). 

For/this reason, it is of particular interest to consider 
the more complete set of distortions in aluminum repre
sented by the vibration spectrum. The dispersion curves 
have been computed for face-centered cubic aluminum 
for propagation along the [100] and [110] directions; 
the results are plotted in Fig. 5 along with the experi
mental results. This could scarcely be called good 
quantitative agreement with experiment. However, we 
should keep in mind first that except for the use of the 
observed atomic volume, no experimental parameters 
enter the calculation, and there is no opportunity to 
include successive terms until agreement is reached. 
Second, aluminum provides a very sensitive test because 
of the strong cancellation. The comparison with experi
ment represents rather good agreement for the band-
structure energy, as may be seen from comparison of the 
elastic constants derived from Fig. 5 with those based 
solely on electrostatic energy and with those obtained 
from experiment. This comparison is made in Table VI. 
The error for the fundamental shear constant C44 is a 
factor of 2, but because of the strong cancellation 
this represents an error in the band-structure contribu
tion to the energy of less than 10%. The error in the 
small band-structure energy contribution for the other 
shear constant is greater than a factor of 3; it is 
interesting to note that in this one case, we find the band 
structure effects increasing the stiffness, as we should. 

Although this calculation is restricted to constant 
total volume, we obtain a value for the bulk modulus. 
We note that the bulk modulus derived from our com-

TABLE VI. Elastic constants in aluminum 
in units of 1011 dyn/cm2. 

Shear Longitudinal Bulk 
cu (cu—cn)/2 en (en+ei2-j-2£44)/2 (01+2ci2)/3 

Electrostatic 
Total 
Experimental* 

17.2 
1.5 
2.8 

1.8 
3.4 
2.3 

6.0 
10.7 

4.1 
11.2 

1.5 
7.6 

puted vibration spectrum is in error by a factor of 5, 
which is partially responsible for the errors in the longi
tudinal elastic constants. We may also note that this 
error in the bulk modulus gives rise to a negative value 
of C12, contrary to experiment. We cannot compare the 
longitudinal constants with electrostatic values, since 
the latter diverge; however, we can compare them with 
the Bohm-Staver23 value for both longitudinal con
stants, which is 23 for aluminum based upon an effective 
charge of three. 

We have made a further calculation which provides a 
check upon the internal consistency of the theory; this 
is the calculation of the conduction-electron density in 
the crystal. Since it was necessary to compute the first-
order screening field in the course of our calculation, we 
may also readily compute the first-order conduction-
electron charge density. This has been computed for 
face-centered-cubic aluminum and added to a uniform 
density, with the result shown in Fig. 6. The density 
plotted includes the increase outside the core due to 
renormalization after orthogonalization, but not the 
orthogonalization charge itself; thus, a more complete 
calculation would give a further lowering in density at 
the cores. The decrease in density at the cores is over
estimated in any case, since we find negative electron 
densities at those points. Except at the cores, the charge 
density is found to be rather uniform, varying from 0.63 
to 1.38 times the average. This supports our treatment 
of the first-order terms in the wave functions as small 
and therefore supports, to some extent, our use of 
perturbation theory. Similar calculations for aluminum 
and silicon24 in a diamond structure show strong non-
uniformity and therefore appreciable unreliability of the 
perturbation expansion. 

V. VOLUME-DEPENDENT PROPERTIES 

We proceed next to the variation of energy with 
volume and therefore the inclusion of the free-electron 
energy Efe. We have computed the energy-lattice-
wave-number characteristic as well as the free-electron 

« R. E. Schmunk and C. S. Smith, Phys. Chem. Solids 9. 100 (1959). 

FIG. 6. Conduction electron density on a (110) plane in alu
minum. This is a projection of a three-dimensional plot; if viewed 
from above, the lines would form a square grid. 

23 D. Bohm and T\ Staver, Phys. Rev. 84, 836 (1950). 
24 W. A. Harrison (to be published). 
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TABLE VII. Total binding energy computed for aluminum 
in rydbergs per ion. 

kf 
Efe 
Ebs 

Ees 

Total 
Exch. and corr. 
Total 

Compressed 

1.0200 
4.513 

-0.319 
-7.408 

-3.214 
-1.692 
-4.906 

Observed 
density 

0.9273 
3.453 

-0.223 
-6.370 

-3.140 
-1.522 
-4.662 

Expanded 

0.8346 
2.597 

-0.201 
-5.479 

-3.083 
-1.355 
-4.438 

energy and the electrostatic energy for aluminum for 
higher density, such that kF was increased by 10%, and 
lower density, such that &F was decreased by 10%, as 
well as at the observed density. The total binding 
energies (energy of the metal minus the energy of iso
lated ions and isolated electrons) obtained from these 
calculations for face-centered-cubic aluminum are given 
in Table VII. The final numbers, which include correc
tion for exchange and correlation, will be discussed in 
the following section. 

The agreement with the observed binding energy of 
4.16 Ry per ion is certainly not good though we will see 
that it is improved by the addition of the correction for 
exchange and correlation. Furthermore, the energy con
tinues to drop as the volume drops rather than showing 
a minimum at the observed density. This difficulty will 
not be ameliorated by the inclusion of an exchange and 
correlation correction. 

These results look particularly unsatisfactory when 
compared with the computations by Brooks9 on the 
cohesive energy and lattice distance of a number of 
metals. He found a discrepancy of only about 0.01 Ry 
for aluminum and good agreement with the lattice 
distance. Two particular differences in the approaches 
may explain the differences in results. First, Brooks was 
abte to deal directly with the small cohesive energy 
(0.24 Ry) rather than the total binding energy. Second, 
he used the quantum defect method to obtain the inter
action of the electrons with the ions, and thereby used 
an experimental interaction rather than one computed 
from first principles. In any case, the approach used by 
Brooks appears much more informative with respect to 
the total energy and its change with volume, and we 
conclude that our computation of the free-electron 
energy is not accurate enough to be useful. 

We may, however, consider two volume-dependent 
effects which do not depend upon our computation of 
the free-electron energy. These are the variation in the 
energy difference for the different metallic structures and 
the variation of the vibration spectrum with volume. 
Both of these are directly obtainable from the energy-
lattice-wave-number characteristics which we computed 
for aluminum at the three volumes. The energy difference 
between structures is given in Table VIII. The axial 

TABLE VIII. The energy of bcc and hep structures minus that 
of the fee structure in Al in rydbergs per ion. 

kf (a.u.) 
bcc 
hep 
Axial ratio 

Compressed 

1.0200 
0.00738 
0.00242 
1.684 

Observed 
density 

0.9273 
0.00464 
0.00124 
1.793 

Expanded 

0.8346 
0.00204 

-0.001 
>2.3 

ratio for the hexagonal close-packed structure was 
carried out only to 2.3, so the numbers given for the 
expanded lattice are quite crude. Such a high ratio in the 
expanded aluminum would suggest that some other, and 
probably nonmetallic, structure would have lower 
energy. We note also the tendency of the fee structure 
to become more stable at high pressure. 

The vibration spectrum was computed at all three 
densities. In the expanded face-centered-cubic lattice, 
the crystal was unstable against the formation of almost 
all phonons propagating in the two directions computed, 
again reflecting the instability we found above. In the 
compressed lattice, the frequencies of all modes were 
roughly doubled. We may use these changes in frequency 
to estimate the pressure derivatives of the elastic con
stants; that is, we approximate dC/d\rir by ro5C/or0. 
The results are given in Table IX along with the experi
mental values from Schmunk and Smith. 

VI. FREE-ELECTRON EXCHANGE AND CORRELATION 

Our treatment of exchange and correlation is that 
proposed by Brooks9 and is simply a generalization of 
Slater's8 free-electron exchange. Gell-Mann and Brueck-
ner25 have given the energy of a free-electron gas as a 
function of electron density in the high-density limit. 
We may formally write this result as a density-depend
ent (uniform) self-consistent potential equal to twice 
the Gell-Mann-Brueckner expression. When we com
pute the total energy we subtract the electron-electron 
interaction including this self-consistent potential, which 
has been counted twice, to obtain the correct result. This 
is generalized to nonuniform electron densities simply 
by letting the self-consistent potential depend upon 
position through the dependence of the density upon 
position. The necessity of the factor of 2 is made clear 
physically by considering a variational argument; as we 

TABLE IX. Pressure derivatives of the elastic constants, 
dc/d lnr, in aluminum in 1011 dyn/cm2. 

Theoret. 
Exptl.a 

Cu 

- 9 0 
-50 .4 

(Cll — Ci2)/2 

- 7 0 
-35.3 

(cn+2ci2)/3 

- 1 0 0 
- 1 1 4 

» R. E. Schmunk and C. S. Smith, Phys. Chem. Solids 9, 100 (1959). 

25 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 
(1957). 
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change the position of a single electron, the energy of the 
entire system changes because of the change in energy 
of that electron and because of the change in energy of 
the electrons it interacts with. These changes are equal 
and add. 

In our calculation of the free-electron energy, only 
the uniform potential enters and we may use the Gell-
Mann-Brueckner expression directly. In computing the 
band-structure energy we treat the first-order fluctua
tions in charge density as small. Thus in going from the 
Hartree treatment to that including free-electron ex
change and correlation, we simply replace the Poisson 
equation (which enters the calculation of the self-con
sistent field) relating a Fourier component of the 
interaction potential vq

sc to a Fourier component of the 
electron density pq by the equation 

V = l^e*/q2+2(dE«+c/dp)^Pq, (19) 

where 

Ee+C=z -0 .916/r ,+0.0622 lnr.--0.096 

and 
p = 3/(47rr5

3). 

Poisson's equation is given by Eq. (19) with the term 
in Ee+C dropped. 

This treatment is equivalent by definition to the high-
density expression for treating the uniform component 
of the charge density and should be good also for long 
wavelengths. I t becomes quite suspect, however, for 
wavelengths of the order of rs. In treating perfect crystals 
the smallest wave numbers which enter correspond to 
reciprocal lattice vectors, where this condition is already 
reached. Thus, at best, it is a very crude method for 
including exchange and correlation in the calculation of 
E(q). One might well expect Hubbard's method10 as 
used by Sham11 to be preferable for large wave numbers. 

In Table VII we showed the effect of adding free-
electron correlation and exchange to the free-electron 
energy as a function of volume.26 This brings the binding 
energy into better agreement with experiment (4.16 
Ry/ion), but does not bring the minimum energy any 
closer to the observed spacing. 

The inclusion of free-electron exchange and correla
tion in the band-structure energy does not seem to 
improve the situation. This has been done only at the 
observed volume and was found to lower the energy by 
another tenth of a rydberg per ion, worsening the agree
ment with experiment. 

Finally, we computed the vibration spectrum from 
the E(q) curve which included free-electron exchange 
and correlation. I t was found that the lattice became 
unstable against the formation of almost all phonons 
considered (those shown in Fig. 5). 

We can only conclude that the inclusion of this simple 
correction for exchange and correlation worsens our 

26 Here the density used was the electron density between ions; 
that is, the renormalized density. The average density would 
perhaps be more appropriate but the difference is small. 

agreement with experiment. Only in the total energy are 
the results improved, and these are very inaccurate in 
any case. 

VII. A PHENOMENOLOGY BASED UPON THE THEORY 

Our discussion up to this point has concerned an 
attempt to compute known properties of metals from 
first principles. Physical and mathematical approxima
tion have been used, but no experimental parameters 
have been introduced. We noted that there was an 
arbitrariness in the pseudopotential which is reflected in 
the arbitrary function /(ic,a), which we removed by 
attempting to optimize the convergence of the perturba
tion expansion. We could instead adjust / ( K , « ) to obtain 
agreement with some experimental findings and thereby 
obtain a phenomenological E(q) which hopefully would 
describe other experiments. 

The success we have had in treating a number of 
properties would suggest that the / ( K , « ) which we have 
obtained from the theory is rather close to the best one 
and would suggest that we proceed by adding experi
mental corrections to our computed / ( K , « ) . The simplest 
such correction is the addition of a constant. We have 
sought to optimize the agreement with the vibration 
spectrum in aluminum with the addition of a constant. 
The result is shown in Fig. 7 based upon an E(q) [the 
phenomenological E(q) given in Table I I ] which was 
calculated by adding 0.64 Ry to the /(K,a) from the 
theory. The agreement is perhaps not remarkable, but 
one should keep in mind that only a single adjustable 
parameter has been introduced. I t should also be noted 
that this calculation also corresponds to a correct pseudo-
potential in the sense that exact solution of the pseudo-
potential equation should lead to exactly the same 
energy bands as with the other pseudopotential or with 
our starting Hamiltonian. I t might finally be noted that 
the addition of this constant raises the value of the 
form factors of Table I by roughly 0.02 Ry. 

The important consideration concerning the develop
ment of a phenomenology is that the results of calcula-

qa/2ir 

FIG. 7. Vibration spectrum of aluminum from the phenomeno
logical calculation based upon a single adjustable parameter. Com
parison is made with the measurements of J. L. Yarnell, J. L. 
Warren, and S. H. Koenig, Proceedings of the International 
Conference on Lattice Dynamics, Copenhagen, August 1963 
(published in Phys. Chem. Solids). 
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tions will depend upon the particular formulation. A 
complete knowledge of the vibration spectrum does not 
contain sufficient information for computing all prop
erties. This is most clearly seen in terms of the effective 
ion-ion interaction of Fig. 3; this is the Fourier trans
form of E(q) (plus a simple Coulomb term). The vibra
tion spectrum is determined entirely by the first and 
second derivatives of this curve evaluated only at the 
observed interatomic spacings. Thus any curve which 
fits these derivatives fits the vibration spectrum but 
each will lead to different results for other properties. 
The missing information must be supplied by the form 
of the phenomenology. I t is therefore important to base 
the phenomenology upon a theory which gives a good 
account of a range of properties of the material in its 
own right. 

APPENDIX 

We will proceed with the evaluation of the matrix 
elements of W, which we obtain from Eq. (15), 

W\k)=V\k) 
+Za(m*/2m+(k\W\k)-Ea)\a)(a\k), (Al) 

and will finally evaluate the total energy. We first 
eliminate the appearance of W upon the right-hand side 
by multiplying on the left by (k |, solving for (k | W | k), 
and substituting back into Eq. (Al) to obtain 

W\k)=U\k)+\' , ' _ _ - , (A2) 

where 
l - ( k | P | k ) 

U\k)=V\k)+Za(fi2k"/2m-Ea)\a)(a\k). (A3) 

We may note that U is a first-order quantity; but, 
since fi2k2/2m is a zero-order quantity, Eq. (A3) indi
cates that P must also be regarded as first order. This 
is satisfactory since (k | P | k) is of the order of 0.1; how
ever, it means that our use of W in the form of Eq. (Al) 
will mean that selected higher order terms will appear 
in our "second-order" energy of Eq. (13). This need not 
worry us, but we may note that the use of the potential 
of Pick and Sarma4 (their pseudopotential is simply U) 
could be justified as retaining only true second-order 
terms. 

The potential V entering our pseudopotential is to be 
the self-consistent potential and therefore includes the 
potential due to the conduction electrons. This latter 
contribution includes a zero-order term coming from 
plane-wave electrons, a first-order term (because 
<k | JP | k> is first order) from orthogonalization and re-
normalization, and a first-order term from the use of 
first-order terms in the wave function with coefficients 
given by Eq. (12). This final term is the screening field; 
in computing it we may again treat the orthogonalized 
plane waves as plane waves to obtain the first-order 
result. Second-order terms in V could only enter a 
second-order energy calculation through (k | V | k), but 

there is no screening of the diagonal terms. The first-
order screening terms are obtained by summing over 
occupied electron states in just the way we will sum over 
states to obtain the total energy. 

The only remaining ambiguity is in the evaluation of 
Ea. In our treatment of a series of metals3 and in Sham's 
treatment of the sodium vibration spectrum,11 Ea was 
taken equal to the eigenvalue of the free ion. This is 
again an allowed pseudopotential, but in line with our 
attempt to make /(*,«) as close to Ek—Ea as possible 
(and also to give the optimized pseudopotential men
tioned earlier) we wish to take Ea to be the core eigen
value in the metal. We distinguish between the evalua
tion of the diagonal element (k |PF|k) and the off-
diagonal elements entering the second-order sum. 

The diagonal term is given by 

< k | W | k ) = < k | f f | k > / ( l - < k | P | k » 

= ( k | F | k ) 

(ft**V2»+<k| F|k)-£.)<k|o><a|k> 
+Z«-

l -<k | i> |k> 
(A4) 

Ea appears multiplied by ( k | P | k ) ; thus we need Ea to 
first order. To first order it is given by the eigenvalue in 
the isolated ion plus the potential evaluated at the 
nucleus due to (a) the tails of the ion potentials from 
other ions, plus the field due to their orthogonalization 
charges (that is, the charge induced at each ion by 
orthogonalizing the plane waves to the core states on 
that ion); (b) the potential due to a uniform compen
sating negative background; (c) the potential due to the 
orthogonalization charge at the ion in question; and 
(d) the screening field due to the use of first-order wave 
functions for the conduction electrons. The terms (a) 
and (b) combine naturally with (k | V | k) and with the 
direct electrostatic interaction between the ions to give 
a modified effective charge for the electrostatic energy. 
The term (c) is the same for all ions and may be evalu
ated at the beginning; it is of the order of a rydberg in 
the metals we treat. The term (d) combines naturally 
with the band-structure energy when we compute the 
total energy. 

The off-diagonal matrix elements of W may be con
veniently obtained by combining Eqs. (A2) and (A3) 
and writing the result in the form, 

(k+q |TF |k )=<k+q |F |k ) 

+E« <k+q| (m2/2m)+(k\ V\k) 

-JE«|a><a|k>+Ea(k|-
m2 

2m 
•<kW\k) 

(a |k)<k+q|P |k) 
-Ea a) . (A5) 

l - < k | P | k > 
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Again we consider the four corrections to the value of 
Ea for the isolated ion which we listed in the previous 
paragraph. The contributons (a) and (b) may be com
bined with terms in (k | V \ k) to give an energy closely 
related again to the electrostatic energy of point ions in 
a uniform negative background. Since this electrostatic 
energy is almost exactly equal to that obtained by re
placing each atomic cell by a uniform isolated sphere 
with volume equal to the atomic volume, and since we 
require a value averaged over all ions, we evaluate these 
terms by making that replacement. The term (c) is 
evaluated as for the diagonal terms, and the term (d) is 
dropped. This term (d) is a second-order term in W 
which in fact depends upon the arrangement of the ions; 
a numerical examination of this correction.in aluminum 
indicated that it is in fact tiny in comparison to the 
other corrections. We obtain finally a value for 
(k\V\k)-Ea given by 

3 r ° 3Ze2 

< k | F | k > - E « « — / v°(rydr— -€«-»<«>*. (A6) 
r0* Jo 10r0 

Here r0 is the radius of a sphere containing an atomic 
volume, v°(r) is the potential within an isolated ion 
(including the Slater exchange potential), and the 
potential at an ion due to the orthogonalization charge 
at that ion; ea is the Hartree-Fock energy parameter for 
the core level in question in the isolated ion. 

We have now written all of the needed expressions in 
explicit forms which may be evaluated directly in terms 
of the potentials for isolated ions. We may proceed in 
the manner used earlier1 to obtain the total energy. 

We first decompose the index a into an index j 
specifying the ion and an index t specifying the core level 
in that ion. The total volume 12 is also factored into the 
number of ions N times the atomic volume fl0- We may 
then factor the matrix elements of P. 

<k+q|Pjk>=S(q)<k+q| i> |k>, (A7) 
with 

S(q) = iVr-1£;<r-*q,r ' (A8) 
and 

<k+q|* |k> = E,<k+q|<><*|k>, (A9) 
where 

<k+q|/> = a<T1/2 [tri^'VMdT. (A10) 

We may also define an operator ep such that 

< k + q | ^ | k ) = Ei<k+q| (* 2 *V2w) 
+ ( k | 7 | k ) - £ « | ^ | k > , (Al l ) 

with (k\V\k)~Ea given by Eq. (A6). Then the off-
diagonal elements of W may also be factored in the form 

<k+q|PF|k> = 5'(q)<k+q|w|k> (A12) 

with 

< k + q | H k > = v H k + q | # | k > 
+ < k | ^ | k > < k + q | i > | k > / ( l - ( k | p | k » , (A13) 

where the Fourier transform of the potential has also 
been factored 

< k + q | 7 | k ) = S ( q ) v (A14) 

This factorization of the matrix elements will enable 
us to carry out the various integrations before specifying 
the arrangement of the ions and will thereby give us the 
total energy as a function of ion positions. 

We proceed by summing the second-order energies of 
Eq. (13) over all states within the Fermi sphere. The 
difference between the sum over the unperturbed sphere 
and the true distorted Fermi surface is third order in W 
and therefore negligible. From this we subtract an 
energy equal to the Coulomb self-energy of the conduc
tion electrons, which is counted twice in the Hartree 
approximation, and add the direct Coulomb interaction 
between the ions to obtain the total energy. The treat
ment of these electron self-energy terms and their com
bination with the contribution from the diagonal terms 
<k| W|k) is tedious but straightforward, and no addi
tional approximations are necessary. Finally we de
compose the energy into three parts. The free-electron 
energy per electron is given by 

3 mF* 1 ( e , + K P w - ^ 2 / 2 m ) ( k | / ) ( / | k ) 
Efe = • J^Jct — 

5 2m NZ l - < k | p | k > 

+ 7 ~ 7 ^ ~ 7 7 7 " [(?°(r)-Ze*/r)- (A15) 
l - < k | £ | k ) a v J O0 

and depends only upon the density of ions, not on their 
detailed arrangement. The band-structure energy per 
electron is written, taking advantage of the factorization 
of the matrix elements, in the form 

Eu=T,«S*(q)S(q)E(q), (A16) 
where 

r Y , 1 |<k+q |* |k> |» 
E(q) = Ylk — 

NZ (ti2/2m)(k2-(k+qy) 

q*Qo 
_ | V e | 2 . ( A 1 7 ) 

SirZe2 

Here vq*
c is the contribution of the first-order screening 

field to vq. Finally, the electrostatic energy is equal to 
the electrostatic energy of point ions with a number of 
electronic charges equal to the effective valence, 

2 * = Z ( l + ( i V Z ) - 1 E J b ( k | # | k » (A18) 

embedded in a uniform compensating background. 
In addition to a slightly different form of the matrix 

elements of w from the one we had in our previous treat
ment,1 there is a difference in the decomposition of the 
energy into these three terms. In our earlier treatment, 
an additional term in E(q) appeared which was propor
tional to w and to p. Pick and Sarma4 have shown that 
the application of the closure relation to this term puts 
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it in a form in which it can be naturally included partly 
in the free-electron energy and partly in the electrostatic 
energy. That term never appears explicitly in the present 
treatment because of our choice of a Hermitian w in 
Eq. (15). Thus, we now have a different effective charge 
for the electrostatic energy, which is equal to the charge 

1. INTRODUCTION 

THE large electronic specific heat Cv and suscepti
bility x of palladium metal has been a subject of 

some interest for many years.1-5 From AgPd alloying 
studies it has been advanced that the Ad band is shy 
0.4 to 0.6 of an electron of being completely filled. The 
relatively large observed values of the electronic 
specific heat and the susceptibility have been associated 
with the combined effects of a large value of the density 
of states at the Fermi level in the d band Nd(EF) and 
a sizeable intraband exchange interaction. 

Of particular interest is the behavior of the tempera
ture dependence of x, for it is found2 that x(T) exhibits 
a pronounced maximum in the vicinity of 85 °K. This, 
and the fact that magnetic impurity studies have 

* A preliminary report of portions of this work has been given 
previously, A. C. Gossard and V. Jaccarino, Bull. Am. Phys. Soc. 
7, 556 (1962). 

1 N . F. Mott and H. Jones, The Theory of the Properties of 
Metals and Alloys (Clarendon Press, Oxford, England, 1936). 

2 F. E. Hoare and J. C. Matthews, Proc. Roy. Soc. (London) 
A212, 137 (1952); D. Budworth, F. Hoare, and J. Preston, ibid. 
A257, 250 (1960). 

3 A. J. Manuel and J. M. P. St. Quinton, Proc. Roy. Soc. 
(London) A273, 412 (1963). 

4 E. W. Elcock, P. Rhodes, and A. Teviotdale, Proc. Roy. Soc. 
(London) A221, 53 (1954). 

BM. Shimizu, J. Phys. Soc. Japan 16, 1114 (1961). References 
to other theoretical work are given in this article. 

on the ion plus the orthogonalization charge at each ion. 
In addition, the free-electron energy is simpler in form. 
The separation given here, which is the same as that 
used by Pick and Sarma,4 seems much more natural 
than the one that we used earlier, though the total 
energy is the same in either case. 

shown6-8 Pd to be an extremely polarizable metal have 
quite naturally led to the belief9 that an ordered anti-
ferromagnetic spin state occurs below 85 °K. Alterna
tively it has been suggested4 that the anomalous peak 
in x{T) could be obtained from an unusual shape to the 
density-of-states curves in the region of the Fermi level. 
Recent precise calorimetric measurements10 have shown 
there is no measurable specific-heat anomaly at the 
temperature corresponding to the maximum in x(T) 
as would be expected from a second-order transition. 
In addition neutron diffraction measurements11 have 
established that at low temperatures the spontaneous 
moment per Pd atom must be less than 0.03 Bohr 
magnetons. Observations of the nuclear magnetic reso
nance (NMR) of Pd105 in Pd metal at low temperatures 
indicated that the upper limit on the magnetic moment 
per atom must be several orders of magnitude smaller 
than that which is deduced from the neutron experi
ments. (We will discuss the meaning of the latter two 
experiments later on.) Thus it appears there is little to 
support the conjecture of antiferromagnetism in Pd 
metal. 

6 F. W. Constant, Phvs. Rev. 36, 1654 (1930). 
7 D. Gerstenberg, Ann. Physik 2, 236 (1958). 
8 J. Crangle, Phil. Mag. 5, 335 (1960). 
9 A. B. Lidiard, Proc. Roy. Soc. (London) A224, 161 (1954). 
10 J. Crangle and T. F. Smith, Phys. Rev. Letters 9, 86 (1962). 
11 S. C. Abrahams, Phys. Chem. Solids 24, 589 (1963). 
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Knight Shifts and Susceptibilities of Transition Metals: Palladium* 
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(Received 17 June 1964) 

The nuclear magnetic resonance (NMR) of Pd105 has been observed for the first time. The temperature de
pendence of the Pd105 NMR in palladium metal was studied in the region 1.4 to 300°K. The relatively large 
linewidth (5H = 9 ± 2 Oe) at all temperatures necessitated the use of continuous averaging techniques to ob
tain the requisite sensitivity. The field for resonance, at a fixed frequency, was found to have a maximum in 
the vicinity of 85°K, as does the susceptibility x (T). From an analysis of the temperature dependence of the 
Knight shift K(T) and of x (T) it was deduced that: (1) d-spin paramagnetism is responsible for the observed 
behavior of K(T) and x(T), (2) the principle contribution to K in Pd arises from ^-spin-induced core 
polarization and (3) the core-polarization hyperfine field Hcp—— 689±20kOe/spin. From a partitioning of 
the various contributions to K, x, and the specific heat, an estimated value of 1/TIO^L0.8T sec-1 °K is ob
tained for the nuclear spin-lattice relaxation rate at low temperatures. It is shown that the "knee" in x(T) is 
not associated with a static antiferromagnetic ordering; an upper limit of 10~5 IXB per Pd atom for the spon
taneous moment at low temperatures is obtained. A diamagnetically uncorrected value of the Pd105 nuclear 
moment/z105= — 0.639±0.003 nmwas determined. 


